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Spin-orbit coupling effects in two-dimensional circular quantum rings:
Elliptical deformation of confined electron density
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We study electron states confined in two-dimensional circular quantum rings in the presence of spin-orbit
coupling due to both structure and crystal inversion asymmetry in the external magnetic field. It is demon-
strated that the confined electron density loses the circular symmetry of the confinement potential provided that
both Rashba and Dresselhaus coupling constants are nonzero, with the exception of a special case of equal
coupling constants and absence of the spin Zeeman interaction. An elliptical deviation from the circular
symmetry—present already for a single confined electron—is for two electrons strengthened by the Coulomb
repulsion. We discuss signatures of the charge-density deformation in the experimentally accessible quantities:
magnetization and charging properties of the ring. Relevance of the results of one-dimensional ring models for
description of spin-orbit coupling effects is also discussed.
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I. INTRODUCTION

Spin-orbit coupling in semiconductor nanostructures is
considered useful for spintronics and quantum information
processing since it translates the spatial motion of an electron
into rotation of its spin.'-® In quantum dots the spin-orbit
coupling”'* leads to decay of confined electron spin
polarization.'> Spin-orbit-coupled open quantum rings and
their arrays are studied in the context of the Aharonov-
Casher effect!®!” and other spin-related transport
phenomena'®-?! as well in quantum gates design.’ Persistent
currents in closed semiconductor quantum rings attracted a
lot of theoretical attention?’~3! and the interest in this field is
renewed by the recent observation of the magnetization pro-
duced by self-assembled quantum rings.3? The effect of spin-
orbit coupling on the magnetization, persistent spin, and
charge currents in closed quantum rings*3° was extensively
studied within strictly one-dimensional approximations of
the ring confinement.

The  spin-orbit  interaction  in  semiconductor
nanostructures—although crucial for spin manipulation and
relaxation—has energetically weak effects. In particular for
quantum rings the spin-orbit coupling energy is by at least
two orders of magnitude smaller than the energy spacing
between the ground and the first-excited states of radial
quantization. This fact is usually accepted as a natural argu-
ment for strictly one-dimensional approximations*-#° in the
discussion of the spin-orbit coupling effects. The one-
dimensional models are based on an effective energy opera-
tor derived by averaging the actual Hamiltonian with the
ground-state radial wave function.

In the present paper we perform a systematic exact diago-
nalization study of one and two electrons confined in two-
dimensional circular quantum rings in the presence of the
spin-orbit coupling due to the inversion asymmetry of both
the structure (Rashba coupling) and the crystal lattice
(Dresselhaus coupling). The exact diagonalization results are
confronted with the ones produced by the lowest-radial-state
approximation, which turns out to introduce a number of
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artificial effects in the spectra and charge densities of the
confined system, particularly when both spin-orbit coupling
types are present. The case of comparable contributions of
the Dresselhaus and the Rashba types of coupling is the one
for which persistent helical spin densities waves appear in
the two-dimensional electron gas.*!#?

In the presence of spin-orbit coupling the stationary
states—even when confined in circular potentials—are no
longer orbital angular-momentum eigenstates. However,
when only a single type of the coupling—Rashba or
Dresselhaus—is present both the spin-up and spin-down
components of the wave function do have definite angular
momenta, and in consequence the spin and charge densities
retain the circular symmetry of the confinement potential.
When both types of the spin-orbit interaction are simulta-
neously present the spin densities lose the circular symmetry,
and thus a possibility of deviation of the charge density from
the circularity is also opened. Indeed such a pronounced de-
formation of the charge density was found in Ref. 34, in
particular for equal Rashba and Dresselhaus coupling con-
stants and in the absence of the Zeeman spin interaction. We
identify this result as an artifact of the lowest-radial-state
approximation. The deformation of the charge density is in-
deed found in two-dimensional rings but only in the presence
of the spin Zeeman effect and/or for nonzero but unequal
coupling constants. Moreover, the actual deformation occurs
in a perpendicular direction to the one predicted by the
lowest-radial-state approximation. We demonstrate that the
charge-density deformation distinctly influences experimen-
tally accessible ground-state properties including the chemi-
cal potential which determines the single-electron charging
of the ring® and the magnetization’? produced by persistent
currents, especially for two electrons for which the deforma-
tion is radically enhanced by the Coulomb interaction.

II. THEORY

We consider a two-dimensional single-electron Hamil-
tonian with the magnetic field perpendicular to the plane of
confinement
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h=< p*+V(r)>1+—g,uBBoZ+HR+HD, (1)
2m 2 :

where p=—ifi V+eA, the vector potential is taken in the sym-
metric gauge A=B(-y/2,x/2,0), 1 is the identity matrix,
V(r) stands for the confinement potential, and Hy and H,
introduce the linear Rashba and Dresselhaus spin-orbit inter-
actions. For x and y axes oriented parallel to [100] and [010]
crystal directions, respectively, the spin-orbit terms have the
form

HR = a(pyo-x - pr'y)/ﬁ (2)

and

HD= B(an'x_Py(T\r)/h- (3)

The two-dimensional Dresselhaus coupling constant (3
=(%)?Bsp depends on d—the thickness of the layer of con-
finement in the growth direction—and the bulk Dresselhaus
constant B3p. For the most popular value of GaAs bulk
constant*  B,p=27.5 eV A® and d=5 nm one has P
=10.8 meV nm, which is used below as the maximal realis-
tic value (for the alloyed InGaAs material constant B, is
slightly increased®’). The value of the Rashba constant «
depends on the slope of the potential along the growth direc-
tion, which is partially defined by the growth conditions
(asymmetric doping or indium concentration profile) but can
be tuned by electrical gating,*® in particular to match the
Dresselhaus coupling constant for observation of the helical
spin-density waves.*!42

We consider a circular quantum ring potential

V(r) = = Volexp[- (+/R,)"] - exp[- (+/R) "]} (4)

and apply parameters corresponding to  etched
Iny ;GayoAs/GaAs quantum rings:*’ potential depth V,
=50 meV, electron effective mass m*=0.063m,, dielectric
constant €=13.125, and Landé factor g=-2.15. We assume
the outer and inner ring radii of R,=60 nm and R;=40 nm,
respectively. In Eq. (4) we apply parameter y=35, for which
the radial potential is close to a rectangular quantum well.

The spectrum for the single electron without spin-orbit
coupling is given in Fig. 1. The ground-state angular-
momentum transitions occur nearly ideally periodically,
which is a characteristic feature of nearly one-dimensional
rings. The magnetic period of the ground-state Aharonov-
Bohm oscillation is 0.565 T, which corresponds to a flux
quantum threading a strictly one-dimensional ring of radius
Rip=48.3 nm. In Fig. 1 more or less 25 meV above the
ground state we observe a branch of energy levels corre-
sponding to the first radial excitation.

For 8=0 (a=0) Hamiltonian (1) commutes with the total
angular momentum J, (J_) operator defined as J.=L_* S,
where S,= %(rz is the operator of the z component of the spin
and L=-iA1(r X V) is the orbital angular-momentum opera-
tor. For a single type of the spin-orbit coupling present the
single-electron Hamiltonian eigenstates are therefore of the
form
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FIG. 1. (Color online) Single-electron energy spectrum for the
ring defined by Eq. (4) without spin-orbit coupling. The red line
near the bottom of the plot shows the ground-state angular
momentum.

i (Nexp(il; §)
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with /;=/;+1 for the Rashba and /;=/;—1 for the Dressel-
haus coupling. When both types of the spin-orbit coupling
are present the Hamiltonian still commutes with the s-parity
operator P;=Po,, where P is the scalar parity operator
[Pf(r)=f(-r)]. The spin-up and spin-down components of
the Hamiltonian eigenstates possess opposite parities.

The single-electron spin orbitals are found by diagonal-
ization of the Hamiltonian in a basis of multicenter Gaussian
functions*®

2 .
Y= 2 cixs exp| - w + @(xYk -yXy) |, (6)
o 2a 2%

where summation over k runs over centers of Gaussians Ry
=(X,,Y;), s=*1 and y, are eigenstates of the Pauli matrix
o.. In Eq. (6) integer v numbers the Hamiltonian eigenstates.
The imaginary term in the exponent is due to the magnetic
translation which ensures equivalence of all the centers in the
presence of the external magnetic field. The centers Ry are
distributed on a square array*® of 31X 31 centers spaced by
Ax=Ay=5.2 nm. We use the basis function localization pa-
rameter a equal to the variationally optimal value of 5.7 nm.

The two-electron eigenproblem for the Hamiltonian H
=h(1)+h(2)+(e?/4meeyr,,) is diagonalized in the basis of
antisymmetrized products of operator (1) eigenstates,

K K
V=3 3 [ - Q0D ()
V2PL:1 v=u+l

Convergence of the calculation up to 0.01 meV is usually
reached for K=22, and the present approach allows for in-
clusion of up to at least K=52 single-electron states. Typi-
cally, the difference between the two-electron energies as
calculated for 52 and 22 single-electron basis states is
smaller than 1 weV. Discussion of the applicability of the
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multicenter basis to the two-electron problem is given in
Ref. 48.

III. RESULTS AND DISCUSSION

The presentation of the results is organized in the follow-
ing way. First we consider the single-electron states in the
absence of the Zeeman interaction (g=0). We begin by the
case of a single type of the spin-orbit coupling present (Sec.
III A), then we discuss the symmetry breaking as found in
the lowest-radial-state approximation for a=p (Sec. III B),
the case of nonzero but not-equal coupling constants is dis-
cussed in Sec. III C. In Sec. III D the effects of the Zeeman
interactions are explained. The two-electron states are dis-
cussed in Sec. IIT E. Results for magnetization and chemical
potentials are provided in Sec. IIT F.

A. =0, g=0,

Red (dashed) lines in Fig. 2(a) show the energy spectrum
for a single type of the spin-orbit coupling present—pure
Dresselhaus or pure Rashba case. In Fig. 2(b) we addition-
ally plotted the J quantum number (eigenvalue of the total
angular-momentum operator J..), the average values of the
orbital angular momentum (both expressed in #), and the z
component of the spin (in #/2 units). Figure 2(b) was pro-
duced for the pure Rashba coupling—for the Dresselhaus
coupling J and (L) values stay the same, but the average
value of the z component of the spin is inverted. With the
black lines in Fig. 2(a) we plotted the results of the analytical
formula'® for the pure Rashba coupling spectrum within the
one-dimensional approximation

2 2
Ef:fﬂ{Kn%l) +l}+s<n’+l) 1+(ﬂ) }
2 2) "4 2 Wy

(8)

where wozﬁ/(m*r(z)), wp=2a/(firy), n'=l+®/D,, I
=0,*1,*2,... and s= £ 1 are the angular momentum and
spin quantum numbers, respectively, r is the effective radius
of the ring, ® is the magnetic flux threading the ring, and ®,,
is the flux quantum. The results of Eq. (8) as given in Fig. 2
were obtained for ry=R;p=48.3 nm in consistence with the
average ring radius estimated above from the period of the
ground-state Aharonov-Bohm oscillation of Fig. 1. The re-
sults of the one-dimensional formula (8) were shifted on the
energy scale by —40.94 meV to coincide with the two-
dimensional results for B=0. As B grows the energy as ob-
tained in the two-dimensional model rise due to the diamag-
netic effect, absent for strictly one-dimensional rings.
Moreover, we notice that avoided crossings are opened in
the exact spectrum above the ground state. For instance near
B=2 T there is an avoided crossing between the second- and
third-excited energy levels, which both correspond to J
=-3.5 and differ by the majority-spin orientation [this can be
noticed by inspecting (S.) in Fig. 2(b) when they become
ground states, i.e., near 1.5 and 2.25 T, respectively].
Formula (8) predicts no avoided crossings within the
spectrum, and those as found in the exact diagonalization are
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FIG. 2. (Color online) (a) Blue solid curves show the energy
spectrum for a single type of the spin-orbit coupling [«
=10.8 meV nm, B=0 or equivalently =0, 8=10.8 meV nm] for
g=0 as obtained by the present approach. The black lines show the
results given by the analytical formula Eq. (8) for a strictly one-
dimensional quantum ring shifted down on the energy scale by
—40.94 meV. The dashed red curves indicate the results obtained in
the lowest-radial-state approximation (see text) referred to the right
axis. (b) Solid blue and red dashed curves at the top of the plot
show the value of the average spin as obtained for the two-
dimensional quantum ring with the exact diagonalization approach
and with the basis restricted to the lowest radial state, respectively.
The black dotted line and the solid green line indicate the ground-
state total and orbital angular momentum, respectively. The black
solid line near the bottom of the plot shows the s parity of the
ground state. Pure Rashba coupling was applied for this figure («
=10.8 meV nm, 8=0).

due to the contribution of the excited radial states. In order to
illustrate this fact further we performed a reference calcula-
tion restricted to the lowest-radial state. The reference calcu-
lation was performed in the following way: (1) We diagonal-
ize the single-electron Hamiltonian excluding the spin-orbit
coupling. (2) We form a basis of the obtained eigenfunctions
selecting only those without zeroes outside the origin—thus
excluding the excited radial states. (3) The basis obtained in
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this way is used for diagonalization of the full Hamiltonian
(1) including the spin-orbit coupling.

Results of the above procedure (lowest-radial-state ap-
proximation) were plotted in Fig. 2(a) with the dashed red
curve with respect to the right axis. These results are shifted
up on the energy scale by about 0.05 meV with respect to the
exact result (mind the shift of the left and right energy
scales), and the avoided crossings present in the exact spec-
trum are closed. In both the lowest-radial approximation and
the exact calculation in the ground state one obtains only
crossings of energy since the subsequent ground states cor-
respond to different total angular momentum J quantum
numbers [see Fig. 2(b)]. With each J transformation (ground-
state level crossing) we observe a reorientation of the aver-
age spin [see the blue line in Fig. 2(b)]. We notice that the
strict periodicity of the ground-state symmetry transforma-
tions as given by the one-dimensional formula (8) is per-
turbed at higher magnetic fields in the exact diagonalization
spectrum. The Rashba interaction promotes ground states
with spin-up orientation’! and enlarges their ground-state sta-
bility range at the magnetic field scale at the expense of the
spin-down oriented ground states. The magnetic fields for
which the ground-state crossings are obtained in the lowest-
radial-state approximation coincide with the ones produced
by the analytical formula [see Fig. 2(a)] and the strict peri-
odicity of the average spin oscillation is conserved [see the
red dashed line in Fig. 2(b)].

For strictly one-dimensional rings the energy spectrum
and the ground-state properties are ideally periodic with or
without the spin-orbit coupling. For the two-dimensional
ring considered here the ground-state angular-momentum
transitions without the spin-orbit coupling appear nearly ide-
ally periodically on the magnetic field scale (Fig. 1). The
spin-orbit coupling destroys this periodicity [see the orbital
angular momentum and the spin oscillation plotted with the
blue line in Fig. 2(b)]. The periodicity is reproduced within
the lowest-radial-state approximation [see the red dashed line
for the average spin plotted in Fig. 2(b)] and not by the
unrestricted basis.

We find that the first-excited state of the radial quantiza-
tion contributes mostly to the minority-spin component of
the ground-state wave function and we observe a shift of the
maximum of the minority-spin density to a larger distance of
the ring center with respect to the maximum of the majority-
spin density (see Fig. 3). This shift is naturally overlooked by
the lowest-radial-state approximation.

B. a=p,g=0

Figure 4 shows the spectrum as obtained for a=f
=10.8 meV nm with the exact approach (blue solid curves)
and with the basis restricted to the lowest-radial-state (red
dotted curves) shifted down by 0.088 meV. For equal cou-
pling constants both the exact and approximate energy levels
are twofold degenerate. The restricted basis produces
avoided crossings between the two lowest-energy levels and
the rest of the spectrum (near B=0, 0.6, 1.2 T, etc.). The
results obtained with the unrestricted basis do not contain
any avoided crossings.
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FIG. 3. (Color online) Spin-up (red curves) and spin-down den-
sities (blue curves) as obtained in the ground-state for B=0.6 T (a)
and B=0.4 T (b) for the pure Rashba coupling and g=0 (param-
eters of Fig. 2). The dashed vertical lines show the positions of the
maxima of the majority and minority-spin distributions. The black
solid lines show the confinement potential.

Figure 4(b) shows the ground-state charge density calcu-
lated as a function of the angle along the circumference of
the ring for r=50 nm in the presence of the magnetic field of
0.75 T. We can see that the restricted basis produces defor-
mation of the charge density, with no counterpart in the exact
result. In Fig. 5 we additionally plotted the charge and spin
densities for the odd s-parity ground state*’ at B=0.75 T, as
obtained in the lowest-radial-state approximation [Fig. 5(a)]
and by the exact diagonalization [Fig. 5(b)]. Although the
spin densities in the approximate and exact results similarly
deviate from the circular symmetry, in the exact result they
are distributed in a way that their sum is exactly circularly
symmetric, which is not reproduced in the restricted basis
[Fig. 5(a)].

We found that the deviation of the charge density from
circular symmetry that occurs due to the spin-orbit coupling
has an elliptic character, i.e., the charge density is symmetric
with respect to both the diagonal line x=y (crystal direction
[110]) and the antidiagonal line y=-x (crystal direction

[110]). In consequence the charge density acquires extremal
values on the crossing of the average ring radius and the
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FIG. 4. (Color online) (a) Blue solid curves show the spectrum
for a=B=10.8 meV nm and g=0 as obtained with the unrestricted
basis. Red dotted curves indicate the results of the lowest-radial-
state approximation shifted down on the energy scale by 0.088
meV. The black dotted curves show the results for the spin-orbit
coupling excluded. The dashed lines show the parameter p charac-
terizing deviation of the charge density from the circular symmetry
[Eq. (9)], as obtained by the exact diagonalization (blue line) and
with the lowest-radial-state approximation (red line). (b) Charge
density obtained for B=0.75 T plotted along the center of the ring
r=50 nm as obtained by the exact diagonalization (blue curve) and
with the basis restricted to the lowest radial state (red line) for the
ground state of odd s parity.

symmetry axes. Therefore, in order to quantify the elliptic
deformation of the charge density we use a parameter

[P - )
wp

)

where (|W|?) is the average electron density calculated over
the angle along the circumference of the ring at a distance of
50 nm of its center, and |W(7/4)| is the value obtained for
the angle /4, i.e., in point of Cartesian coordinates x=y
=35.33 nm [see Fig. 5]. The p values as obtained with the
restricted and unrestricted bases are plotted at the lower part
of Fig. 4(a). In the lowest-radial-state approximation the pa-
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FIG. 5. (Color online) Charge and spin densities as obtained for
g=0, =B=10.8 meV nm and B=0.75 T in the basis restricted to
the lowest-radial-state (a) and in the unrestricted basis (b) for the
ground state of odd s parity (for the ground state of even s parity the
spin-up and spin-down densities are inverted).

rameter is negative (one obtains density minima at [110] di-
rection), and the strongest deformation is obtained near the
ground-state-symmetry transformations—at odd multiples of
half of the flux quantum. In the discussed case of equal cou-
pling constants and g=0 the unrestricted basis produces ide-
ally circular results and parameter p is found equal to zero.

The effects found in the basis restricted to the lowest ra-
dial state, i.e., the opening of the avoided crossings in the
energy spectrum [Fig. 4(a)] and the charge-density deforma-
tion [Figs. 4(b) and 5(a)], including the orientation of the
charge-density maxima on the antidiagonal of the ring (y
=—x line) agree with the results of the one-dimensional
model presented in Fig. 7(a,b) of Ref. 34 obtained for a=8
and g=0. However, none of these results is reproduced by
the unrestricted basis [see Figs. 4(a) and 5(b)]. These effects
turn out to be artifacts of the basis restricted to the lowest
radial state. In fact, both the appearance of the avoided cross-
ings in the energy spectrum and the charge-density deforma-
tion are excluded by the intrinsic symmetry of the Hamil-
tonian (1) present for &= and g=0 as pointed out in Ref. 2.
For a=B and g=0 (i) the Hamiltonian commutes with
o,—0, operator.>*" (ii) The spin-orbit coupling shifts down
the entire spectrum by a constant value 2a’m*/A2. (iii) The
charge density for each of the Hamiltonian eigenstates is not
affected by the spin-orbit coupling.

The results presented above for the nonrestricted basis
exactly reproduce all the above features including the con-
stant downshift of the spectrum [for @=10.9 meV nm equal
to 0.19 meV—the spectrum without spin-orbit coupling is
plotted with the black dotted lines in Fig. 4(a)].

For a= and g=0 the circular symmetry of the charge
density results from the intrinsic symmetry of the Hamil-
tonian and its deformation is excluded independent of the
thickness of the ring. In consequence there does not exist a
ring thickness w small enough for which the exact results
could reproduce the deformation of the charge density pro-
duced by the lowest-radial-state approximation. In other
words, the limitation of the basis to the lowest radial state
does not become a good approximation even in the limit of
small w, although the energy spacing between the lowest-
energy and first-excited state diverge as 1/w? which seems
quite counterintuitive. A related fact—a nonvanishing contri-
bution of the excited Landau levels in the infinite magnetic
field limit of spin-orbit coupled quantum dots for g=0—was
recently indicated in Ref. 51.
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FIG. 6. (Color online) (a) The blue solid and the red dotted
curves show the spectrum as calculated for a=3/2=5.4 meV nm
with the unrestricted basis and in the lowest-radial-state approxima-
tion, respectively. The dashed curves indicate the value of the p
parameter as calculated by the exact (blue) and restricted (red)
bases. The inset shows the ground-state charge density for B
=3.77 T along the circumference of the ring as obtained by the
basis restricted to the lowest radial state (red curve) and for unre-
stricted basis (blue curve). (b) The black line at the top of the plot
show the average value of the z component of the spin, the blue and
red lines the average values of the J_ and J, total angular-
momentum operators, and the green line near the bottom of the plot
the ground-state s-parity obtained in the exact calculation.

C.a#8,g=0

When both coupling types are present but nonequal, there
does not exist a direction in which the spin component would
commute with the Hamiltonian, and in general energy levels
in the external magnetic field are nondegenerate. The spec-
trum for @=5.4 meV nm and S=10.8 meV nm is plotted in
Fig. 6—the blue curves show the exact results and the dotted
red ones indicate the results obtained with the basis restricted
to the lowest radial state shifted down by 0.057 meV. In the
ground state we observe regular s-parity transformations
[Fig. 6(b)] like in the case of pure Rashba coupling of Fig. 2.
However, the total angular momentum is no longer quantized
in the Hamiltonian eigenstates [Fig. 6(b)]. Since the consid-
ered case corresponds to the dominant Dresselhaus coupling
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the J_ average values are closer to the stepwise dependence
observed for a single coupling type present of Fig. 2 than J,.
Also, since the Dresselhaus coupling dominates—the stabil-
ity of spin-down ground states is observed at high field, like
in the case of parabolic quantum dots.>!

Let us now focus our attention on the first ground-state
transformation observed near 0.25 T. For the pure and weak
Dresselhaus coupling>® one obtains here a crossing of spin-
down [=0 eigenstate and spin-up /=—1 energy levels. Both
these levels correspond to odd s-parity symmetry; however
there is no avoided crossing between them since they corre-
spond to different quantum numbers J_=1/2 and J_=-3/2
(opposite spin orientation) before and after the crossing, re-
spectively. For nonzero Rashba coupling accompanying the
dominant Dresselhaus coupling that is considered in Fig. 6
the drop of J_ value from about 1/2 to about —3/2 near 0.25
T is continuous since the two energy levels enter into a nar-
row avoided crossing. The actual crossings in the spectrum
are obtained only when the ground-state s-parity changes
[see Fig. 6(b)] and they are accompanied by jumps in the
average value of J_. For instance near B=2.75 T there is a
ground-state crossing and for B=3.1 T—an avoided cross-
ing occurs [see Fig. 6(a)]. The ground-state energy-level an-
ticrossings are overlooked by the lowest-radial-state approxi-
mation [see the red dotted lines in Fig. 6(a)].

The deformation of the ground-state charge density as ob-
tained by the exact diagonalization occurs only near the
ground-state avoided crossings and becomes more pro-
nounced at higher field—see the deformation parameter p
plotted in Fig. 6(a) with the blue dashed line. The exact value
of the deformation parameter is a few times smaller than the
one obtained in the lowest-radial-state approximation. More-
over, a detectable elliptical deformation of the charge density
in the exact result is only obtained for finite magnetic field,
while in the lowest-radial-state approximation the parameter
p takes a nonzero value already at B=0. Parameter p as
obtained by the exact diagonalization occasionally acquires
positive sign, opposite to the one obtained in the lowest-
radial-state approximation. Then, the maxima of the charge
density as calculated by the exact diagonalization appear on
the diagonal line x=y, while in the lowest-radial-state ap-
proximation charge-density minima are found on the antidi-
agonal x=-y. The exact and approximate charge densities
are plotted in the inset to Fig. 6 for B=3.77 T, when a maxi-
mal deformation is obtained in the exact calculation.

For a ring of smaller width the results of the lowest-
radial-state approximation should be closer to the exact ones.
In order to verify this expectation we considered a ring with
the inner radius R;=55 nm and the outer one R,=60 nm
with potential depth V,=200 meV. The ground-state
avoided crossing becomes too thin to be observed (see Fig.
7). The spectrum in the lowest-radial-state approximation be-
comes nearly identical to the exact one with the exception of
a constant variational overestimate of about 0.067 meV and
an artificial energy gap opened near —281.8 meV. The
ground-state spin oscillation as calculated in the unrestricted
basis retains its periodicity in the considered magnetic field
range [Fig. 7(b)]. A pronounced difference is still found in
the confined charge density. The deformation of the exact
charge density disappears with narrowing of the ground-state
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FIG. 7. (Color online) Same as Fig. 6 but for a ring of four times
smaller width: R;=55 nm and R,=60 nm. The energy spectrum
obtained by the restricted basis in (a) was shifted down by 0.067
meV.

energy-level crossings and becomes too weak to be observed
(inset to Fig. 7), while the deformation obtained in the
lowest-radial-state approximation not only remains, but is
increased by a factor of 50% with respect to the case of Fig.
6 [see the deformation parameters in Figs. 6(a) and 7(a)]. In
the context of the charge-density deformation the results of
the lowest-radial-state approximation do not really become
closer to the results of the exact diagonalization in the limit
of small ring width.

D. g=-2.15

The spin Zeeman effect for perpendicular magnetic field
introduces o, operator into the Hamiltonian. With the Zee-
man effect and the spin-orbit coupling present there does not
exist any spin component whose operator would commute
with the Hamiltonian even for a=/, which lifts the hidden
symmetry of the Hamiltonian? discussed above. The spec-
trum for g=-2.15 and @=£4=10.8 meV nm is plotted in Fig.
8(a). We can see that two lowest-energy levels separate from
the rest of the spectrum and the ground state undergoes
s-parity oscillations [see Fig. 8(c)] in the external magnetic
field. The Zeeman effect promotes the spin-up orientation
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FIG. 8. (Color online) (a) Black curves show the energy spec-
trum as calculated by the exact diagonalization for a=p
=10.8 meV nm and g=-2.15. The red symbols show the deforma-
tion parameter p, which in wider B range is presented also in panel
(b). (c) The black curve at the top of the plot shows the ground-state
average value of the spin component, the red curve presents the
average orbital angular momentum and the plot at the bottom of the
plot indicates the s parity.

[Fig. 8(c)] at high field. The charge density distinctly devi-
ates from the circular symmetry [cf. deformation parameter
plotted in Fig. 8(a)]. The deformation parameter takes on
maximal values at the ground-state s-parity transformations
and it stays positive above 2.5 T [see Fig. 8(b)], i.e., with
charge-density maxima localized on the diagonal of the
ring—see Fig. 9 for B=2 T. The maximal value of p param-
eter at the ground-state s-parity transformations implies that
the deviation from the circular symmetry is stronger in the
excited state than in the ground-state—see Fig. 9.
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FIG. 9. (Color online) Charge and spin densities for the param-
eters considered in Fig. 8 at B=2 T.

For a==0 the electron density remains circular, no
avoided crossings are observed in the spectrum of definite
orbital angular momenta [see Fig. 10(a)], and a complete
ground-state spin polarization is observed for any nonzero B.

The energy spectrum, the ground-state spin, orbital angu-
lar momentum, and s parity are presented in Fig. 11 for non-
equal and nonzero coupling constants, namely, for a=8/2
=5.4 meV nm. The results qualitatively agree with the ones

-39.0 TV
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]
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FIG. 10. (Color online) (a) Black curves show the energy spec-
trum as calculated by the exact diagonalization for a=£=0 and g
=-2.15. (b) The black curve at the top of the plot shows the ground-
state value of the spin component, the red curve presents the orbital
angular momentum and the plot at the bottom of the plot indicates
the s-parity.
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FIG. 11. (Color online) Same as Fig. 8 but for a=p/2
=5.4 meV nm, g=-2.15.

obtained for a=g in Fig. 8. In particular, an energy gap
between two lowest-energy states of opposite parities and the
rest of the spectrum is opened and maximal deformation of
the electron density is found at the ground-state s-parity
transformations. However, the p parameter is no longer con-
tinuous at the symmetry transformations [cf. the case of «a
=3 of Fig. 8(a)]

For one of the coupling constants equal to zero either J,
or J_ operator commutes with Hamiltonian, hence no defor-
mation of the electron density is found, and the energy spec-
trum (Fig. 12) does not contain any energy gap between two
lowest-energy levels and the rest of the spectrum—in con-
trast to Figs. 8 and 11.

E. Two confined electrons

Figure 13(a) shows the two-electron spectrum for g=0 in
the absence of the spin-orbit coupling. The magnetic period
of the ground-state transitions is halved?? with respect to the
single-electron case (compare Figs. 1 and 13). Figure 13(b)
presents the spectrum for the highly symmetric spin-orbit
coupling of @=£8=10.8 meV nm. In Fig. 13 the two-electron
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spectrum is only shifted down by the spin-orbit coupling by
the energy of 0.38 meV, which is twice the value of the shift
2(a®?m*/h?) for a single electron (see Sec. III B). No other
difference is found between the spectra presented in Figs.
13(a) and 13(b). The invariance of the spectrum although due
to the symmetry of the Hamiltonian, in the exact diagonal-
ization calculation is only reproduced by a fully convergent
two-electron basis, which illustrates the strength of the
present numerical approach.

In the absence of the spin-orbit coupling, in two-electron
quantum rings as well as in quantum dots the ground-state
spin triplets (singlets) correspond to odd (even) orbital angu-
lar momenta, and the ground-state total spin quantum num-
ber oscillates between 0 and 1 in the external magnetic field.
When the Zeeman effect is included the spin oscillations
vanish at higher field and the state with spins polarized par-
allel (g <0) to the magnetic field vector is established as the
ground state. This spin-up polarized ground state of the odd
orbital angular momentum corresponds to the odd s-parity
symmetry. The even and the odd s-parity energy levels for
g=-2.15 are plotted in Fig. 14(a) for a=B=0 with the red
and blue curves, respectively. Note that the Zeeman effect
lifts the fractional??> Aharonov-Bohm oscillation for two con-
fined electrons and leaves an integral period shifted by half
of the flux quantum with respect to the single-electron oscil-
lation. For «=£3=10.8 meV nm [see Fig. 14(b)] the ground-
state crossings—which for a=B=0 are due to the orbital
angular-momentum transitions—are replaced by avoided
crossings between the odd s-parity energy levels. Opening of
avoided crossings is more evident for a case of a weaker
spin-orbit coupling @=[£=5.4 meV nm presented in Fig.
14(c).

In Fig. 15 the two-electron ground-state charge and spin
densities for B=4 T are presented for a=5=10.8 meV nm.
The left column of plots [Figs. 15(a) and 15(c)] corresponds
to g=0, the right column to g=-2.15 [Figs. 15(b) and 15(d)].
In the upper row of plots [Figs. 15(a) and 15(b)] the electron-
electron interaction is neglected and it is included in the
lower row of plots [Figs. 15(c) and 15(d)]. For g=0 both the

-78.8 T T T
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7921/

-79.6

E [meV]

-80.4

-80.8 \ \ \
0 1 2 3 4
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FIG. 13. Two-electron spectrum for g=0 in the absence of the spin-orbit coupling (a), and for a=8=10.8 meV nm (b).
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FIG. 14. (Color online) Two-electron energy spectrum for g
=-2.15 and equal coupling constants a=/3. Blue (red) curves show
the energy levels of odd (even) s-parity. Plots (a), (b) and (c)
correspond to a=0, a@=10.8 meV nm, and a=5.4 meV nm,
respectively.

spin and charge density remain circularly symmetric. In the
case of single-electron s-parity eigenstates the spin-up and
spin-down densities were noncircular although their sum re-
produced the circular symmetry [Fig. 5(b)]. For a single elec-
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FIG. 15. (Color online) Two-electron charge and spin ground-
state densities for B=4 T for a=B=10.8 meV nm. g=0 is as-
sumed in (a) and (c), and g=-2.15 in (b) and (d). Electron-electron
interaction is neglected in (a), (b) and accounted for in (c), (d).

tron (a=p, g=0) the ground state is twofold degenerate with
interchanged spin densities for the odd and even s-parity
ground states. For two confined electrons one of them occu-
pies the odd s-parity state and the other the even s-parity
state. The two-electron ground state is therefore nondegener-
ate and the spin densities sum up to a circularly symmetric
distribution. For nonzero g, and a=pf the two-electron
ground-state density—even without the electron-electron
interaction—is more strongly deformed than the single-
electron ground-state density. This is because in the first-
excited single-electron state—which is also occupied in the
two-electron ground state—the elliptic deformation is stron-
ger than in the single-electron ground state. Moreover the
single-electron ground state and the first-excited state pos-
sess charge-density maxima at the same y=x line [see the
maximal value of the deformation parameter at the ground-
state symmetry transformations presented in Fig. 8(a)]. The
electron-electron interaction makes the elliptic deformation
of the charge density even stronger [cf. Figs. 15(b) and
15(d)].

The elliptic deformation parameter p for two electrons
and g=-2.15 is plotted in Fig. 16. The blue curves corre-
spond to @=B=10.8 meV nm with (solid curve) and without
(dashed curve) electron-electron interaction. The electron-
electron interaction strongly enhances the elliptic deforma-
tion of the charge density particularly at odd multiples of half
quantum (0.565 T), which correspond to crossings of triplet
states in the absence of the spin-orbit coupling [see Fig.
14(a)]. The black line in Fig. 16 shows the result obtained for
a=B/2=54 meV nm (electron-electron interaction in-
cluded). Dependence of the parameter p on the magnetic
field is very similar to the one found for equal coupling
constants.

F. Magnetization and single-electron charging properties
Theoretical analysis of the spin-orbit coupling effects pre-

sented above required discussion of the special case of g
=0. For the experimentally relevant quantities we limit the
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FIG. 16. (Color online) Parameter p quantifying the deviation of
the electron density from the circular symmetry as obtained for two
electrons for a=B=10.8 meV nm and g=-2.15 with (blue solid
line) and without electron-electron interaction (blue dashed line).
The black solid line corresponds to a=£3/2=5.4 meV nm
(electron-electron interaction included).

discussion to the case of negative Landé factor specific to
InGaAs structures.

Figures 17 and 18 show the magnetization (M =—%) pro-
duced by a single and two electrons. Figure 17 presents the
case of pure Rashba and pure Dresselhaus coupling as com-
pared to the results obtained without the spin-orbit interac-
tion. For B>2 T the magnetization for both pure Rashba
and pure Dresselhaus interactions acquire the same periodic-
ity as in the absence of spin-orbit coupling only the magnetic
fields for which the discontinuities appear (due to the
ground-state total angular-momentum transitions) are
slightly shifted to lower (for Dresselhaus coupling) or higher
(for Rashba coupling) values.
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FIG. 17. (Color online) Magnetization for a single (upper plot)
or two confined electrons (lower plot) without the spin-orbit
coupling and for a single type of the spin-orbit coupling present.
g=-2.15 is assumed for the Landé factor.
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FIG. 18. (Color online) Magnetization for a single (upper plot)
or two confined electrons (lower plot) without the spin-orbit cou-
pling and for both types of spin-orbit coupling present. g=-2.15 is
assumed for the Landé factor.

For both coupling constants nonzero the magnetization
discontinuities result from the s-parity transformations. For a
single electron the magnetization dependence on the mag-
netic field (see upper panel of Fig. 18) is similar to the one
presented in Fig. 17 for a single type of spin-orbit coupling
present. A qualitatively different result between the case of a
single and both types of spin-orbit coupling present is ob-
tained for two confined electrons (cf. lower panels of Figs.
17 and 18). For both coupling constants nonzero the ground
state already for relatively weak magnetic field becomes per-
manently s-odd and the ground-state crossings due to the
s-parity transformations disappear of the ground-state energy
level [see Figs. 14(b) and 14(c)]. In consequence the two-
electron magnetization becomes a continuous function of the
magnetic field, in contrast to both the case of a=£=0 and a
single type of the spin-orbit coupling present. We also ob-
serve that the amplitude of the magnetization oscillations is
reduced when both spin-orbit coupling types are present
(Fig. 18). This reduction results from hindered circulation of
the persistent currents around the ring due to appearance of
the charge-density minima. The magnetization reduction is
slight for a single electron and more pronounced for two
electrons, in accordance with the relative strength of the el-
liptic deformation for one and two confined electrons.

In the single-electron charging experiments* the quantum
rings embedded in a charge tunable structure are occupied by
subsequent electrons when the chemical potentials of
N-electron system is aligned with the Fermi energy of the
electron reservoir. The chemical potential is defined as wuy
=Ey—Ey_,, where Ey stands for the ground-state energy of N
confined electrons. The chemical potentials for one- and two-
electron systems are plotted in Fig. 19 for a single type of
spin-orbit coupling and in Fig. 20 for nonzero values of both
a and B coupling constants. The single-electron chemical
potential depends on the magnetic field in a qualitatively the
same manner in all the cases considered in Figs. 19 and 20.
A qualitative difference is obtained for two electrons. The
chemical potential for N=2 without the spin-orbit coupling
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FIG. 19. (Color online) Chemical potentials for one (three lower
curves) and two (three upper curves) confined electrons without the
spin-orbit coupling and for a single type of spin-orbit coupling
present (g=-2.15). The chemical potential for two electrons is
shifted down by 1 meV.

has cusps (discontinuous derivatives) whenever the ground-
state symmetry transformations occur for one or two elec-
trons. The ground-state symmetry transformations for N=1
result in V-shaped cusps and the transformations for N=2 in
A-shaped cusps. In Fig. 20 we notice that when both spin-
orbit coupling types are present the A-shaped cusps in u, are
replaced by smooth maxima, which is related to the avoided
crossings between s-odd-parity energy levels that are opened
in the low part of the energy spectrum [Figs. 14(b) and
14(c)].

Both the magnetization and the chemical potential as pre-
sented in Figs. 17-20 indicate that the case of two electrons
for both spin-orbit coupling types present differs qualita-
tively from the case when a single or no type of spin-orbit
coupling is present. Above we demonstrated that for
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FIG. 20. (Color online) Chemical potentials for one (three lower
curves) and two (three upper curves) confined electrons without the
spin-orbit coupling and for both types of spin-orbit coupling present
(g=-2.15). The chemical potential for two electrons is shifted
down by 1 meV.
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g=-2.15 when both coupling constants are nonzero the
ground-state electron density is subject to an elliptical defor-
mation. For a single type of spin-orbit coupling present as
well as in the absence of the spin-orbit coupling no elliptical
deformation is found. Magnetization and chemical potential
as obtained for two electrons and both spin-orbit coupling
types present have qualitatively the same dependence on the
magnetic field as the one found recently for a circular quan-
tum ring with two symmetrically placed repulsive defects®
in the absence of the spin-orbit coupling. Figure 15(c) of
Ref. 52 shows that the A-shaped cusps disappear of the two-
electron chemical potential, and Fig. 16(c) of the same work
demonstrates that the two-electron magnetization becomes a
continuous function of the magnetic field when the ground
state acquires the odd spatial parity for stronger magnetic
field. Reference 52 also demonstrates that for a single elec-
tron confined in a circular ring with two symmetrically
placed defects, both the chemical potential and the magneti-
zation remain qualitatively the same as for the clean—
circular quantum ring—due to the spatial parity ground-state
transformations replacing the angular-momentum transitions
for the clean ring. Therefore, at least for one and two elec-
trons, the elliptical deformation of the charge density, which
is found in a circular ring when both spin-orbit coupling
types are present, results in the same consequences for both
the charging and the magnetic properties of the ring as an
elliptical perturbation of the circular quantum ring potential
in the absence of the spin-orbit coupling.

IV. SUMMARY AND CONCLUSIONS

We have performed a systematic exact diagonalization
study of spin-orbit coupling effects for one and two electrons
confined in a circular quantum ring of finite width. We dis-
cussed validity of one-dimensional models assuming that the
radial functions of confined carriers can be identified with
the lowest-energy radial state as obtained without the spin-
orbit coupling. For a single type of spin-orbit coupling
present the lowest-radial-state approximation overlooks
rather secondary effects: (i) some avoided crossings that ap-
pear in the excited part of the spectrum, (ii) nonideal period-
icity of the ground-state oscillation of the average spin ob-
tained for g=0, and (iii) relative radial shifts of the majority
and minority-spin densities. The performance of the lowest-
radial-state approximation is worse when both Rashba and
Dresselhaus coupling types are present. In that case the
lowest-radial-state approximation produces charge densities
which differ qualitatively from the exact ones. In particular
for equal coupling constants in the absence of the Zeeman
effect the basis restricted to the lowest radial state produces
charge densities with artifactally broken circular symmetry,
which at least for some applications excludes the usage of
the one-dimensional models when Dresselhaus and Rashba
spin-orbit interactions are simultaneously present. We have
demonstrated that the charge density as obtained by the exact
diagonalization deviates from the circular symmetry only
when the Zeeman effect is present or when the coupling
constants are nonequal. The elliptical deformation of the
single-electron density that is found by the exact diagonal-
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ization is generally weaker than in the lowest-radial-state ap-
proximation and with a different orientation of the density
maxima. Moreover, the actual elliptic deformation of the
charge density is only obtained for finite magnetic fields,
while in the lowest-radial-state approximation the deforma-
tion is already found at B=0. We have considered signatures
of the charge-density deformation on experimentally relevant
quantities. We have found that the elliptical deformation of
the charge density that appears due to the interplay of the
spin-orbit coupling and the Zeeman effect has similar conse-
quences for the magnetization and charging properties of the
ring as an elliptical deformation of the circular quantum ring

PHYSICAL REVIEW B 80, 195319 (2009)

confinement potential in the absence of the spin-orbit cou-
pling.
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